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Flow-induced vibration of heat-exchanger tube bundles is an important issue, concerning
component life and plant availability. Predictive methods have been developed to analyze
heat-exchanger tube responses and wear, for realistic multi-supported tubes and flow
configurations. Experimental validation of these methods is currently pursued by several
research groups, with considerable success. However, experiments on vibro-impacting tubes
involve very carefully instrumented test tubes and tube-supports, which is seldom possible
in real field components, due to space limitations and severe environment conditions.
Hence, there is a need for identification techniques that enable the diagnostic and field
monitoring of tube-support interaction under real operating conditions, using information
from motion transducers located far from the impact locations. In this paper, the basic
theory for the propagation of flexural waves is briefly reviewed, and techniques are
developed for the experimental identification of the wave path propagation parameters and
impact forces, from tube response measurements at remote locations. These inverse
problems are quite sensitive to the noise contamination of measurements. Optimization
techniques are used to overcome these difficulties, and their merits are accessed using
extensive numerical simulations. Then, experiments performed on a long steel beam are
presented. A simple method is developed to deal with the boundary reflections of a wave
generated by a single impact. Experimental identification of the wave-path properties, of
isolated impact forces and also of impact locations is performed. Overall, quite good
agreement was found between directly measured and remotely identified quantities.
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1. INTRODUCTION

Flow-induced vibrations of heat-exchanger tube bundles are a main source of concern,
when component life and plant availability are addressed. Indeed, excitation by the flow
turbulence or even fluidelastic phenomena may lead to premature failure due to fatigue
or vibro-impact wear between tubes and tube supports. This has been demonstrated by
many experiments, as well as by field reports. The authors and other researchers have
developed predictive methods and computer codes to analyze heat-exchanger tube
responses and wear, for realistic multi-supported tubes and flow configurations [1–12].
Experimental validation of these methods is a large-scale enterprise, currently pursued by
several research groups, with considerable success [13–19].
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However, laboratory experiments on vibro-impacting tubes usually involve very
carefully instrumented test tubes and tube-supports—a luxury that is seldom possible in
real field components, due to space limitations and severe environment conditions
(temperature, radiation, . . .). The present authors are therefore convinced that there is an
urgent need for identification techniques that enable the diagnosis of tube-support
interaction under real operating conditions, using information from motion transducers
(e.g., accelerometers, strain gages) located far from the impact locations. Such techniques
will be valuable for validation of predictive methods, under real-life conditions, as well as
for condition monitoring performed on real components. These issues will be addressed
in a series of papers.

The limited work which has been published in this field will be now reviewed briefly.
In two pioneering papers, Whiston [20] and Jordan and Whiston [21] discussed theoretical
and experimental aspects related to the remote identification of impact forces. These
authors modelled the flexural propagation waves in the frequency domain, using a
Timoshenko beam model without damping. In his book, and also in a series of related
papers, Doyle [22] followed a similar approach. These authors have presented experimental
results which are quite satisfactory, provided by single impacts acting on long beams, in
such a way that wave reflections at the boundaries do not interfere seriously with the direct
wave used for identification purposes.

On the other hand, in a series of papers, Lin and Bapat [23, 24] have presented methods
for estimation of the impact forces and also of the support gap for a
single-degree-of-freedom system, for sinusoidal and random excitations. The extension of
these methods to a beam with a single non-linear gap-support was proposed using a modal
approach in the frequency-domain [25]. Also, Busby and Trujillo [26] presented a similar
approach, where the force identification is achieved in the time-domain. The extension of
these interesting methods to multi-supported beams with an ill-defined or unknown modal
basis is far from obvious. In a recent paper, Wu and Yeh [27] discussed the problem of
source separation, for several simultaneous impacts, using a time-domain approach. The
so-called cepstral methods of deconvolution, which may be quite useful when dealing with
non-dispersive phenomena, have been used very seldom for dispersive flexural waves [28].

Most of the basic work on inverse theory was triggered by identification problems in
the geophysics/astrophysics and radar/sonar research fields. These problems usually
involve non-dispersive phenomena, and lead to problems somewhat different from those
which concern us. Nevertheless, for an approach to inverse problems, readers will find
useful information in the applied work by Jeffrey and Rosner [29, 30], Dimri [31] and
Parker [32]. In a more general context, Press et al. [33], Groetch [34] and Hansen [35]
presented excellent reviews on inverse problems and current methods for solving them.

The main difficulty is due to ill-conditioning—physical or numerical—of the
transformation (propagation) operators which describe the phenomena. This leads to
inverse formulations which are very sensitive to noise contamination of the measured
signals. Usually, problems are partially overcome by regularization of the transformation
operators, using several methods—namely, singular value decomposition, incorporation of
physical constraints and optimization techniques [33–35]. In this series of papers, we will
address some of these methods, in the context of vibro-impact system identification.
Ill-conditioning difficulties are enhanced for such problems, due to the dispersive nature
of flexural waves.

The laboratory experiments performed by most authors usually lead to adequate
estimations of the impact forces. However, their tests are based on very restrictive
experimental conditions, such as: well-known system parameters, usually a single impact
location and negligible noise contamination. Therefore, these experiments are very remote
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from the operating conditions of real-life industry components, which emphasizes the need
for further work. Earlier efforts by Whiston [20] and Doyle [22] inspired the general
approach adopted in this paper. However, we discuss in detail several identification issues
(regularization methods and sensitivity to noise contamination), using extensive numerical
simulations. Current problem restrictions will be relaxed in future papers, in order to
extend the identification methods to complex system dynamics [36].

In the first part of this paper, some basic theory for the propagation of flexural waves
is reviewed. Then, techniques are developed for dealing with the following inverse
problems: identification of the propagation parameters, from tube travelling wave
measurements; identification of the impact forces, based on response measurements at
remote locations; identification of the impact locations, using the fact that flexural waves
are dispersive.

Several optimization techniques are developed to overcome ill-conditioning difficulties,
and their relative merits are accessed. Also, a simple method is presented which removes
the boundary reflections from the original wave generated by an isolated impact.

To conclude the paper, experimental results are presented, for a long (6 m) steel beam
with non-anechoic boundaries. The properties of the wave-path are experimental identified
and remote identification of isolated impacts is successfully performed. Blind estimation
of the impact location is also achieved. Overall, quite good agreement was found between
directly measured and remotely identified impact forces, by using simple Bernoulli–Euler
beam theory for modelling wave propagation.

2. THEORETICAL FORMULATION

As discussed later, the simple Bernoulli–Euler theory for flexural vibrations—which was
tentatively used in this work—proved to be adequate for impact identification. Therefore,
only this basic formulation (which neglects rotational inertia and shear deformation
effects) will be addressed here. Then, for a viscous damping model, the small-amplitude
flexural response of a beam (with constant cross-sectional properties) is described by the
differential equation (see, for instance, reference [37])

EI 14y/1x4 + rA 12y/1t2 −N 12y/1x2 + h 1y/1t=F(t), (1)

where Fy (t) is the external force and y(t) is the dynamic vibratory response, E is Young’s
modulus and r is the mass density of the beam, A is the area and I is the moment of inertia
of the cross-section, N is the axial tension of the beam and h is a viscosity coefficient. In
this paper, parameters E, r, A, I, N and h are assumed constant along the beam. (A list
of nomenclature is given in the Appendix.)

Wave solutions of equation (1) will be assumed in the form C e−i(kx−vt). With, for the
moment, the axial tension and damping effects neglected, a solution of equation (1) may
be obtained in the form

y(x, t)= s
n

(C1n e−iknx +C2n eiknx +C3n e−knx +C4n eknx) eivn t, (2)

where, for each circular frequency vn , the parameter kn is given by the so-called dispersion
relation

kn =[rA/EI]1/4zvn, (3)

and the parameters C1n to C4n are frequency dependent.
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Equation (1) is said to be dispersive because the phase speed cn =vn /kn is not constant
with respect to frequency. Physically, this means that travelling waves change their shape
and ‘‘expand’’ as they propagate. From equation (3), one has cnAv1/2, which means that
an unbounded propagation speed would be obtained as v:a, an obviously unrealistic
conclusion. Such problems may be conveniently dealt with by using a Timoshenko beam
model. However, in practice, very high-frequency waves may not be excited and will be
buried in the experimental noise—we believe these are the reasons why the simple model
(1) gives adequate results.

One should notice that the first and second terms of solution (2) are propagating waves,
while the third and fourth terms are non-propagation (evanescent). Physically, the two
propagating terms represent a forward and a backward travelling waves. The two
evanescent terms are significant only near the sources of discontinuous behaviour—such
as excitation locations, changes in the wave-path cross-section and the system
boundaries—and they are spatially damped outside these disturbance regions (see section
3.1). Hence, these terms are useless when identifying sources from remote-location
responses, as their inversion will obviously lead to unstable results. Thus, one should be
prepared to accept some errors in the identification procedure. Also, to avoid a strong
influence from the near-field evanescent terms, response transducers should not be located
near the beam ends. From the preceding discussion, each travelling wave in equation (2)
is given by

yf (x, t)3 s
n

Cnf e−iknx+ivn t, yb (x, t)3 s
n

Cnb eiknx+ivn t, (4)

where the parameters Cn depend on the initial motion conditions and also on the external
excitation. Two important applications will be highlighted here.

(a) Wave propagation in a free system. Upon assuming, for convenience, that the beam
response y0(t)0 y(0, t) is measured at location x=0 during time T, the coefficients Yn of
the spectral form

y0(t)= s
n

Yn eivt (5)

may be computed from Fourier analysis. Then, the propagated wave can be predicted at
any other location x by using

yf (x, t)3 s
n

Yn e−iknx+ivn t, yb (x, t)3 s
n

Yn eiknx+ivn t. (6)

These equations will be used to estimate the wave-path propagation parameters, from
response measurements.

(b) Travelling wave generated by a localized force. If a normal force Fy (t) is applied at
location x=0 (during a time T) then, upon assuming a constant bending stiffness EI and
using the spectral form

Fy (t)= s
n

Fn eivn t, (7)
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the beam response at location x is given by [22, 38]

yf (x, t)3 1
4EI

s
n

Fn

k3
n
i e−iknx+ivn t, yb (x, t)3 1

4EI
s
n

Fn

k3
n
i eiknx+ivn t, (8)

These equations will be used to convert from the impact forces to response measurements
and for force estimation.

Equations alternative to equations (6) and (8) can be easily obtained when dealing with
velocity, acceleration and strain signals. If the axial tension N and damping effects are
included, the dispersion relation is more complex than equation (3) and kn will display both
real and imaginary parts. Then, it is easy to show that

kn =X−
N

2EI
+X0 N

2EI1
2

+
rA
EI

v2 − i
h

EI
v, (9)

and the wave-path properties depend on three parameters. When N=0 and the viscous
damping coefficient h is small, kn may be approximated by

kn =Czvn −iD
1

zvn

, (10)

with C=[rA/EI]1/4 and D=(h/4rA)C. Often, the propagation environment is such that
the damping coefficient is frequency dependent, a difficulty which has been discussed by
Morse and Ingard [37]. For the low-damped beams considered in this work such effect was
found negligible, as shown in our experimental results.

Another plausible model for damping phenomena, based on complex beam stiffness,
would lead to the simpler formulation

kn =(C−iD')zvn , (11)

where D' is a suitable loss factor. This hysteretic damping model leads to non-causal
responses when used with impulsively excited systems [39]. However, such a conceptual
problem was found negligible, for lightly damped beams.

It should be noted that the preceding formulation, which will be used in the next
sections, applies only when the non-linear effects arise from a few spaced impact stops.
Such is the case addressed in the present paper, where a system with a single gap-support
is analyzed. However, when systems display a large number of impact elements—or even
distributed limiters—wave propagation is significantly affected by the spatial distribution
of non-linear boundary conditions. These aspects have been thoroughly discussed by
Babitsky and Krupenin [40] and Krupenin and Veprik [41], as well as in their referenced
work. Under such conditions, the simple Bernoulli–Euler dispersion relation should not
be used.

In practice, manipulation of the preceding formulations can be conveniently achieved
by fast Fourier transforming all the time-domain signals. Then propagation in the
frequency domain are given by simple products of functions. Finally, the time-domain
estimated results are obtained by inverse Fourier transforms. For instance, the forward
waves from equations (6) and (8) are computed as

Yn =F[ y0(t)] and Gfn (x)= e−iknx:Yfn (x)=YnGfn (x):yf (x, t)=F−1[Yfn (x)],

and

Fn =F[F(t)] and G	 fn (x)=
i

4EIk3
n
e−iknx:Yfn (x)=FnG	 fn (x):yf (x, t)=F−1[Yfn (x)].
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The same reasoning applies for computing backward waves and also for inverse problems.
The properties of direct and inverse Fourier transforms, as well as their existence
conditions, have been discussed by Titchmarsh [42] and Sneddon [43]. In the context of
this work, all signals of practical interest are forward- and back-transformed without
difficulties. Obviously, some care is needed when choosing the processing time block T,
in order to encompass fully the propagated waves (some very low frequency wave
responses will be always truncated). Due to the finite time-window of discrete Fourier
transforms, signals become artifically periodic (wraparound with period T) after processing
in the frequency domain. This induces spurious effects at the beginning and at the end of
the processed time-window, which are enhanced when transients arise in these regions.
Typically, to mitigate this problem, the time-data is multiplied by a suitable weighting
window [44]. However, this also introduces distortions in the signals, something to be
avoided for identification purposes. Therefore, the approach used in this work was to
process the data by using a slightly longer time-window than displayed. From our
experience, dropping the initial and last 5% of the processed signals is enough to disguise
the artefacts which stem from finite-length time-windows. On the other hand, the sampling
rate 1/Dt must be higher than twice the Nyquist frequency to avoid aliasing effects—see,
for instance, reference [44] or[45]. Signal filtering is also an important issue, which will be
addressed in Part 2 of this work, because no filtering was performed on the data of the
present paper.

3. IDENTIFICATION PROCEDURES

3.1.  

An infinite beam model is used for all the numerical simulations presented in this paper.
The displacement wave pulse y0(t), shown in Figure 1(a), is generated at location x=0.
The simple relation (11) was used as a propagation model, with parameters C=0·3446
and D'=0·002—these are plausible values, however, D' is higher than expected for a metal
beam in air (see section 4.4). This value was chosen to emphasize the role of damping in
the identification procedure. Time histories are computed by using 16 384 data values with
a sampling rate Dt=10−6 s. Figures 1(b–f) clearly show the wave dispersion effect, when
responses yf (x, t) are computed at locations x=0·05, 0·2, 0·5, 1 and 2 m. Also, the
superposed undamped waves (computed by using D'=0) show that damping effects are
significant when xq 1 m. One can notice that the wave response at location x=0·05 m
appears to be non-casual. This results from the propagation model (4), which was used
in this simulation instead of the full formulation (2). Hence, the non-casual wave distortion
displayed by Figure 1(b), which is negligible at more remote locations, when the evanescent
terms become irrelevant.

Figures 2(a–d) show some estimations of the original wave pulse y0(t), obtained by
inversion,

Y0(v)=Yf (x, v)/Gf (x, v), (12)

of noisy ‘‘measurements’’ yf (x, t) (at location x=1 m), for several levels of the
noise-to-signal contamination (0, 10, 20 and 50%)—these percentages are defined by using
the r.m.s. levels of white-noise contamination, with respect to the r.m.s. value of each wave
signal. Here, the wave-to-wave transfer function Gf was first computed by using the true
values of C and D' (intermediate plots), and then neglecting damping effects, D'=0 (lower
plots). Results show that this identification problem is well-posed, provided one neglects
damping effects when inverting the remote wave. Indeed, normal (positive) damping for
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Figure 2. Identification of a remote displacement, from the travelling wave (generated with C=0·3446 and
D'=0·002) measured at distance x=1 m. Effect of the noise contamination: (a) 0% noise; (b) 10% noise; (c)
20% noise; (d) 50% noise. In each part: top, noisy wave; middle identified wave for true damping; bottom,
identical wave for damping neglected.

direct propagation is equivalent to negative damping in the inverse problem. Hence, noise
will be unduly amplified by the inversion procedure. Obviously, this problem becomes
progressively more serious as x increases.

However, when identifying excitation forces from response measurements, the inversion
procedure may be more robust to noise. In Figures 3(a–d), from a signal force pulse F(t)
at x=0, an acceleration travelling wave was generated (with EI1 171) and contaminated
with noise. Then, for low damping vaues, the excitation force could be identified by
inversion—including the damping effect—without excessive noise amplification (see
Figures 3(a–d), with damping D'=0·002). This is due to the coefficient (kn )−3 in
equations (8). However, for higher damping values, the inversion procedure becomes very
sensitive to noise if damping is included (see Figure 3(c–d), with damping D'=0·005).
Therefore, one must be careful when including damping effects for inverse estimations, as
results are problem-dependent. If damping is neglected—and it should, for noisy
signals—the results of Figure 3 suggest that the identified force might be corrected by using
a suitable amplifying factor. A simple form for such factor is not readily available,
although it should depend on the damping parameter, the impact distance and also
probably on the pulse shape. Problems of noise amplification can sometimes be overcome
by adequate filtering of the signals. This will be further discussed in Part 2 of this work.
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In Figures 4(b–d) the amplitude and phase of the transfer function Gf (x, v) have been
computed from the Fourier transforms of the displacement signals at x=0 and x=1 m,
as shown in Figure 4(a):

Gf (x, v)=Yf (x, v)/Y0(v). (13)

The results in Figures 4(b–d) are shown as a function of the noise contamination, identical
for both response signals (with noise levels between 00 1%). Once can notice that
formulation (13) is very sensitive to noise, and that the frequency range where Gf is badly
estimated increases with the level of contamination. Indeed, for more realistic noise levels
of about 10%, estimation of parameters C and D' from Gf would be useless. Such an
inverse problem is very ill-posed and should be solved differently.

3.2.  

As discussed in section 1, ill-conditioning of inverse problems may be overcome by
several methods. Often, noise contamination effects may be filtered out by using many
approaches, including singular-value decomposition of the transformation/propagation
operators [36]. Another approach is to enforce some additional physical knowledge in the
inversion process—for instance, the solution domain may be known, or some analytical

Figure 3. Remote Identification of a pulse force, from the travelling wave measured distance at x=1 m. Effect
of the noise contamination (wave generated with EI3 171 and C=0·3446): (a) 0% noise and D'=0·002; (b)
50% noise and D'=0·002; (c) 0% noise and D'=0·005; (d) 10% noise and D'=0·005. For each part, top,
middle and bottom graphs as in Figure 3.
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Figure 4. Estimation of the transfer function Gf (x, v) from two wave measurements at distance x=1 m, as
a function of the noise contamination: (a) time-domain waves at x=0, top and x=1 m, bottom; (b) Gf (x, v)
with 0% noise; (c) Gf (x, v) with 0·1% noise; (d) Gf (x, v) with 1% noise.

form may be postulated for the solution. Then, the inversion process may be formulated
as an optimization problem, with or without penalty constraints [33–35]. This approach
seems well adapted to the problem discussed in section 3.1, and optimization will be
formulated as follows.

Given the noisy signals y0(t) and yf (x, t), and assuming a propagation function in the
form

Gf (x, v)= e−ik(v)x, k(v)= (C−iD')zv. (14)

find parameters C and D' in order to minimize a suitable cost function o(C, D'). Many
functions o may be used, such as the L1 norms (respectively in the time and
frequency-domain),

o1(C, D)= s
T

tn

=yf (x, tn )−F−1[F[y0(tn )]Gf (x, vn , C, D)]=, (15)

o2(C, D)= s
V

vn

=Yf (x, vn )−Y0(vn )Gf (x, vn , C, D)=, (16)
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or the corresponding L2 (least-squares) norms,

o3(C, D)= s
T

tn

=yf −F−1[F[y0]Gf ]=2, o4(C, D)= s
T

tn

=Yf −Y0Gf =2, (17, 18)

or some more exotic criteria, such as the Cauchy and hyperbolic cost functions [46, 47],

o5(C, D)= s
T

tn

ln{1+ =yf −F−1[F[y0]Gf ]=2}, o6(C, D)= s
V

vn

ln{1+ =Yf −Y0Gf =2},

(19, 20)

o7(C, D)= s
T

tn

ln cosh {yf −F−1[F[y0]Gf ]}, o8(C, D)= s
V

vn

ln cosh {Yf −Y0Gf}.

(21, 22)

A critical appraisal of these formulations will be provided in sections 3.4 and 4.4, based
on numerical simulations and experimental results.

3.3.  

Solution of problem (14, 15–22) may be attempted by using a number of methods,
including both deterministic and random search strategies [33]. Figures 5 and 6 show, for
several noise levels and travelling distances, the change of error surface o(C, D') along two
orthogonal directions. These functions, o(C, 0·002) and o(0·3446, D'), were computed from
formulation (18)—the least-squares norm (L2). One may notice that the error functions
usually display many unimportant local minima. As a result, for this type of problem,

Figure 7. True impact force and force estimation, from a wave response at a travelling distance 3 m, for several
impact distances in the inversion procedure (wave generated by using EI1 171, C=0·3446 and D'=0·0005).
(a) Noisy wave at location 3 m; noise=0%. (b)–(f) True force and identified force at distances of 2, 2·5, 3, 3·5
and 4 m, respectively.
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Figure 8. Error functions from the estimated impact forces, as a function of the assumed impact location (wave
generated at distance 3 m, by using EI1 171, C=0·3446 and D'=0·0005; 0% (top) and 50% (bottom) noise
contamination): (a) identification by using formulation (26); error function 1. (b) identification by using
formulation (27); error function 2.

current deterministic algorithms are not well suited to search for the optimal values Ca and
D'a (e.g., the global minimum of o). This statement is strengthened by noting that, in
general, more than two pertinent parameters may exist—this would lead to extremely
expensive deterministic multi-dimensional global search schemes. Hence, stochastic
optimization methods are much better adapted to this problem. Here, the powerful
simulated-annealing method [30, 33, 48–50] was adapted in order to allow a
multi-dimensional search in a continuous space. Our implementation will now be described
briefly.

In stochastic optimization methods, global optimization is achieved by occasionally
allowing the iteration procedure to accept an increase in the cost function o, in order to
avoid being trapped by local minima. In simulated annealing, the optimization procedure
was inspired by the slow cooling of metals during annealing, which leads to quasi-minimal
energy states of the ordered media. Eventual escape from local minima is achieved by
postulating a probability distribution for the possible ‘‘energy’’ states o of the system—as
computed from equations (15–22)—during the ‘‘cooling’’ process. The Boltzmann
probability distribution is commonly used,

Prob (o)= e−o/cT, (23)

where the parameter T is analogous to the current ‘‘temperature’’ in the cooling process
and c is a suitable scaling constant. Then, higher values of the cost function o may be
allowed at any iteration, with a probability which decreases with T, allowing the process
to escape from local minima. When the parameter T is high, at the beginning of the
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optimization, large portions of the search space are explored in order to find the deepest
valley of the ‘‘energy’’ surface. Later, as T decreases, only lower values of the cost function
o will be progressively allowed, in order to refine the search for the global minimum.

The ‘‘cooling’’ schedule used here is given as

T(s+1)= rT(s), T(0)=T0, (24)

where s=0, 1, 2, 3, . . . and r=0·9. Relation (24) is applied after every 100 iterations at
constant ‘‘temperature’’. In our implementation of the annealing algorithm, the search (for
each variable Vi ) proceeds in a random manner, inside a continuous search domain Si ,
centered on the previously accepted iteration. The size of the search domain also decreases
with the optimization ‘‘temperature’’:

Si (s+1)= rSi (s), Si (0)=Si0. (25)

Starting values of the variables are chosen randomly inside physically plausible search
domains. The iteration/cooling scheme proceeds until, for a large number of moves, no
further decrease of the ‘‘energy’’ (cost function) is achieved. Further details can be found
in the above mentioned references.

3.4.    - 

Extensive numerical simulations have been performed by using formulations (15–22),
for several levels of noise contamination, in order to choose better error criteria for this
problem. From these tests one obtains the following conclusions: results obtained by using
time-domain cost functions are similar to those obtained by using the corresponding
frequency-domain functions; The Cauchy and hyperbolic cost functions do not improve
results over those obtained by using the common L1 or L2 norm cost functions; for any
cost function, and up to 100% of noise contamination (at least), the propagation constant
C is sharply defined by the global minimum of the error surface o(C, D'); however, when
noise contamination is high, the damping parameter D' is not clearly defined by the global
minimum of o(C, D').

Obviously, optimizations performed in the frequency-domain are less computer-inten-
sive than if the corresponding time-domain cost functions are used. Therefore, from the
first and second conclusions, only L1 or L2 frequency-domain criteria will be used for the
experimental identification. To illustrate the third and fourth conclusions, Figure 5(a)
shows the error surface o(C, D') along two orthogonal directions, as explained earlier.
Here, we used the signals of Figures 1(a) and (e), after the wave travelled 1 m (with
propagation parameters C=0·3446 and D'=0·002). Figures 5(b, c) show the
corresponding information, when the response signals are contaminated with 10% and
100% noise, respectively.

Another interesting aspect is the sensitivity of the results to the travelling distance
between the transducers used for the identification procedure. Figure 6 shows the change
of the error surface functions (when noise contamination is 20%), for three values of the
distance between transducers: 0·3, 1 and 3 m. These results show that the error minimum
corresponding to the optimal propagation parameter C is better defined for short travelling
distances, and the opposite is true for the damping parameter D', which is better defined
when transducers are well separated.

Clearly, this aspect is better tolerated by the parameter C. Hence, results suggest that
wave-path identification should preferably be based on responses from well separated
transducers—at least when signals are noisy.
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3.5.     

Two important aspects should be considered when addressing impact identification,
using travelling wave measurements: the identification of the impact forces; the
identification of the impact locations.

The first aspect has been discussed in section 3.1 (see Figure 3), under the assumptions
that both the system parameters and the impact locations were known. In sections 3.1 to
3.4 we presented the basics of identifying the propagation parameters. Here we deal with
the second aspect—the identification of the wave source locations—assuming that
propagation parameters have already been extracted in an adequate manner.

A straightforward approach to this problem takes advantage of the dispersive nature
of flexural waves. As shown in section 3.1, dispersive waves generated by pulse forces are
such that one can impose the following constraints: the absolute value of the signal
amplitude is maximum at the wave origin; the duration of the travelling wave is minimum
at the wave origin; waves generated by unilateral impacts are oscillatory everywhere except
at the impact location. One thus has three possible criteria for identifying the impact
locations. Then, the unknown impact location may x0 may be estimated by solving one
of the optimization problems described next.

Given the (noisy) response signal yf (x, t)—and assuming a propagation function in the
form (14) with kn given by formulations (9–11)—find the impact distance x0 in order to
maximize the cost function

d1(x)=Max =F(x, t)=, (26)

or to minimize the cost function

d2(x)= tc c =F(x, tc )=qFnoise , (27)

where tc is the duration of the reconstructed impact force (with respect to a given noise
floor level).

For unilateral impacts, the third criterion leads to minimizing negative force regions,
when identifying positive pulses (or minimizing positive residuals, for negative forces). This
is equivalent to minimizing the cost functions:

d3a (x)=g [F(x, t)Q 0] dt (for positive impact forces),

d3b (x)=g [F(x, t)q 0] dt (for negative impact forces). (28)

In the preceding formulations, the impact force is computed as previously described:

F(x, t)=F−1[F[ yfn (x, tn )]G	 −1
fn (x, vn )]. (29)

For unilateral impacts, these three methods are adequate. However, for most systems,
impact forces are generated by two-side stops, which rules out the third method. When
using the second method, a user-defined noise threshold must be provided. This is a slight
inconvenience, as this method accommodates a range of threshold levels (in these tests,
1/50 of the maximum of the identified force was found adequate). In practice, both criteria
(26) and (27) perform well, as will be shown in Figure 8.

Figure 7 shows several ‘‘impact forces’’, identified from an acceleration wave distanced
3 m from the true impact location. This wave was generated from a two-side impulsive
force, by using propagation parameters C=0·3446 and D'=0·0005 (a realistic value of
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the damping constant, for our experiments). Then, following previous conclusions,
damping was neglected in the inversion procedure when using equation (29). The true force
is superposed to each identification attempt, for several values of the assumed impact
distance (in the range 2E xE 4 m). Dispersive effects on the reconstructed force are
clearly shown, on both sides of the true impact location.

Figure 9. (a) Experimental set-up; (b) Instrumentation.
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Figure 10. Typical wave generated by an impact on the beam, showing the contribution of reflected waves:
(a) response of accelerometer a3 measured wave at distance 0·753 m from impact. (b) response of accelerometer
a5; measured wave at distance 2·252 km from impact.

The practical consequences of such behaviour are illustrated in Figures 8(a, b), where
the error criteria (26) and (27) are computed as a function of the assumed impact distance.
Illustrative plots are presented for no-noise and 50% noise conditions (on the acceleration
wave). From these results, it appears that both methods are effective and that force
estimations may be achieved under quite noisy conditions (at least, for lightly damped
systems). Figures 8(a, b) also display many local maxima and minima, indicating that
conventional optimization methods are unsuited for this problem. Again, the stochastic
algorithm described in section 3.3 proved to be adequate. Indeed, this method should be
invaluable for the blind estimation of impact forces (and the corresponding force locations)
on complex multi-impact problems.

4. EXPERIMENTAL PROCEDURES

4.1.  

Figure 9(a) shows the experimental set-up, consisting on a stainless steel AISI 304
laminated beam with cross-section 50×5·9 mm and length about 6 m. The beam is
supported only at the extremities, with the larger surfaces in the vertical position, by using
(almost) clamped–clamped boundary conditions. The beam supports are mounted on
heavy concrete blocks. The Young’s modulus of the beam is about 2×1011 Pascal and
the mass density is about 7·9×103 kg/m3. Errors of 21% were found in the cross-section
dimensions along the beam and an uncertainty of 25% is expected in the values of E and
r. Then, the parameter C=[rA/EI]1/4 is estimated to lie between 0·332 and 0·352.
Dissipative effects are very low (modal damping was less than 0·1%, for the first beam
mode).

4.2. 

Excitation was performed with an instrumented hammer Brüel and Kjaer (B&K) 8202,
which has a piezoelectric force transducer B&K 8200, equipped with a hard plastic tip
(impact stiffness was measured at 4×106 N/m). Vibratory responses were sensed by using
several miniature accelerometers B&K 4375, located as shown in Figure 9(b). Impacts were
always imposed along direction y, facing accelerometer a2, on the neutral axis of the beam.
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Figure 13. Two estimates of the acceleration response at locations a3, at distance 0·753 m, with the optimal
parameters C0 and D0: (a) from the measured force at location a2; (b) from the ‘‘cleaned’’ acceleration at
location a5.

Accelerometers a1 to a5 were used to sense the ‘‘useful’’ waves (direction y), while
accelerometers a6 and a7 monitored residual vibrations in the orthogonal direction. On
purpose, the accelerometers used in these experiments were selected and mounted without
aiming at better-than-average precision or phase matching specifications. Indeed, based on
preliminary calibrations, the magnitude errors are expected within 10% and phase errors
should lie within 25°. These results apply to the mounted transducers, in the frequency
range 500 Hz0 4 kHz. The non-quantified effects of accelerometers on the beam vibratory
responses are assumed to be small. Data acquisition was achieved with a National
Instruments (AT-MIO-16F5) 8-channel 12-bit card, using signal blocks of 0·02 s and a
digitizing frequency of 25 kHz. This is consistent with the frequency range where signals
displayed significant energy (up to 40 5 kHz). No anti-aliasing filters were used, in order
to avoid filter-induced signal distortions in the frequency range of interest. However,
because of the steady signal energy decrease for increasing frequencies—and accounting
for the relatively high sampling rate—aliasing effects should be negligible. Signal
processing and system identification were performed with a PC-based software, which was
developed by using the MATLAB computing environment.

4.3.    

Figure 10 shows a typical wave generated by an impact on the beam at location a2 and
sensed by accelerometers a3 and a5. One can see that, before the lower-frequency
components of the direct wave have died out, a second and further waves arrive—as the
result of reflections on the boundaries. These reflected waves obviously pollute the useful
signal, and will induce severe errors on the results predicted by inversion. This is one of
the main problems when dealing with realistic vibro-impacting systems, where a multitude
of direct and reflected waves travel simultaneously. Here, a simple approach will be
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adopted to remove reflections, which is adequate if a significant part of the direct
wave is available before arrival of the first reflection—such is the case for these
experiments.

In Figure 10 the arrival of the first wave reflection can be clearly spotted at some time
tr , when the low-frequency ‘‘tail’’ of the direct wave is suddenly perturbed by the
high-frequency content of the first reflection. The response ÿ(x, t) generated for single force
spikes can then be separated into two distinct parts: ÿd (x, t) and ÿr (x, t). The reflected wave
might be predicted and subtracted if the boundary conditions were perfectly known [22].
However, this is not the case for the majority of complex systems, and we will avoid such
an approach. Instead, we prefer to extrapolate the direct wave beyond the arrival time tr

of the first reflection. This will be done by using the theoretical solution of the wave
propagation problem in an infinite beam, when excited by a pulse excitation. Such a
solution should be adequate when used after a significant time, with respect to the
time-scale of the force, as shown next.

As shown in reference [51], the dimensionless wave solution to a Dirac excitation applied
at instant t=0 is given by

Y(x, q)=
1

z8p g
q

0

cos (x2/4q)+ sin (x2/4q)

zq
dq, (30)

where the dimensionless variables are related to physical parameters through relations
x= xzA/I and q= tzAE/Ir.

Figure 14. (a) Measured impact force; (b) estimation of the impact force, from the acceleration response at
location a3, by using the optimal parameter C0.



.  ́  .1036

T 1

Correlation coefficients of the acceleration response estimates at location a3 for
several cost functions

Time-domain Frequency-domain
cost functions cost functions

Correlation ZXXXXXCXXXXXV ZXXXXXCXXXXXV
coefficients Norm L1 Norm L2 Norm L1 Norm L2

Model (9) 0·71 0·70 0·66 0·70
Model (10) 0·68 0·70 0·67 0·70
Model (11) 0·69 0·70 0·67 0·70

The wave displacement formulation (30) has no closed-form solution. However,
solutions for the velocity and acceleration waves are quite convenient:

Y� (x, q)=
1

z8p

cos (x2/4q)+ sin (x2/4q)

zq
, (31)

Y� (x, q)=
1

8z2pq2·5 $(x2 −2q) sin 0x2

4q1−(x2 +2q) cos 0x2

4q1%. (32)

Figure 11 shows the velocity wave (31) as a function of dimensionless time q, for three
dimensionless distances x. One may notice the very high frequency content of the wave,
which is due to the frequency spectrum of a Dirac excitation, as well as to the properties
of the Bernoulli–Euler beam model. This aspect is even more noticeable in the acceleration
wave (32). However, such high-frequency content is not realistic, because (a) the excitation
energy is bounded at high-frequency, and (b) the beam really acts as a filter for very high
frequencies (a result which stems from the Timoshenko theory). More interesting for our
purpose is the lower-frequency response, later in time, with an asymptotic decrease as q−0·5

(for velocity) or as q−1·5 (for acceleration). In this frequency range, the Bernoulli–Euler
beam model is quite reliable and can be used for extrapolation of the experimental flexural
waves.

T 2

True and estimated impact distances for several
optimization criteria

True impact distance 2·25 m
Using method (26) 2·25 m
Using method (27) 2·24 m
Using method (28) 2·25 m
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From formulation (32) and after some algebra, it can be shown that the truncated part
of the experimental accelerations (after time tr ) should be replaced by

ÿ(x, tq tr )=

ÿ(x, tr )

1
(t− t0)2·5 6[a−2b(t− t0)] sin 0 a

4b(t− t0)1−[a+2b(t− t0)] cos 0 a
4b(t− t0)17

1
(tr − t0)2·5 6[a−2b(tr − t0)] sin 0 a

4b(tr − t0)1−[a+2b(tr − t0)] cos 0 a
4b(tr − t0)17

,

(33)

where the parameters a, b and the impact time t0 are computed by minimizing the difference
between the original wave (with reflections) and formulation (33).

Again, the optimization algorithm described in section 3.3 was found adequate to
compute a, b and t0, by using physically plausible starting-values for these parameters.
Figure 12 shows the original waves from accelerometers a3 and a5, as well as the
corresponding ‘‘cleaned’’ waves. For multiple impact forces, or when boundaries are very
close to the motion transducers, the described extrapolation procedure is not adequate.
Indeed, a significant part of the direct wave may not be available before arrival of the first
reflection. Also, the arrival time tr can be very difficult to spot. To deal with such difficult
conditions, a more powerful wave separation method will be presented in Part 2.

4.4.    - 

The techniques previously described were used to identify the propagation parameters
of the system, from a pair of ‘‘cleaned’’ acceleration waves ÿ3(x, t) and ÿ5(x, t). The
adequacy of the propagation models (9–11) was asserted, as well as the performance of
the cost functions (15–18). Figure 13 illustrates the results obtained by using model (11)
and the quadratic error function (L2), in the frequency-domain.

Here, after optimization, the identified parameters Ca and D'a were used to deduce two
separate estimates of the response at location a3: (1) the travelling wave inferred from the
measured force at location a2 (by using equations (8) and (11)), and (2) the travelling wave
inferred from the ‘‘cleaned’’ acceleration wave at location a5 (by using equations (6) and
(11)). Interestingly, all results were satisfactory, and no significant differences were
found between any of the propagation models and cost functions. This is illustrated by
Table 1, showing the correlation coefficients of the wave estimates of Figure 13, for each
of the computed cases:

From these results, it is arguable if more complex propagation models such as equations
(9) or (10) deserve the trouble—at least for lightly damped systems not subjected to severe
axial stresses. Concerning the error models, results from quadratic criteria appear slightly
more consistent. More important, because time-domain error functions lead to heavier
computations, the frequency-domain criteria should be preferred. The average identified
parameters—C=0·343 (20·04%) and D'=0·00046 (227%)—show that the expected
theoretical value of the propagation coefficient (0·332QCQ 0·352, see section 4.1) was
quite precise. Also, as pointed out earlier, damping effects are very low for this steel beam.

4.5.     

Identification of the impact force was performed by using the farthest wave
measurement available—e.g., the ‘‘cleaned’’ acceleration ÿ5(x, t), at an exact distance of



.  ́  .1038

2·252 m from the impact location. Then, blind estimation of the excitation (force and
location) was achieved through equation (29), by using the propagation parameter C
previously identified (damping was neglected in the inversion). Because the excitation force
is a unilateral pulse, all criteria (26–28) could be used to estimate the impact distance.
Figure 14 shows a typical result, obtained by using the maximum amplitude criterion (26).
Here, the measured force (the one with a small bump at 0·0145 s) is compared with the
identified one, with an excellent agreement (the correlation coefficient between these plots
is 0·92). However, the results obtained by using the other criteria are almost
indistinguishable. Indeed, the optimal impact distances obtained by using the three
methods described in section 3.5 lead to almost identical results, as shown in Table 2.

5. CONCLUSIONS

In this paper we have presented techniques to deal with the experimental identification
of pulse excitations, using remote measurements of the flexural waves. Several aspects have
been addressed; namely, (1) the identification of wave-path parameters; (2) the
identification of impact forces; and (3) the identification of impact locations. The
performance of these techniques was asserted through systematic numerical simulations,
as well as a number of simple experiments. From this work, the following conclusions may
be drawn.

Inverse problems which are ill-conditioned—and therefore very sensitive to noise
contamination—may be tackled effectively by using optimization techniques instead of
direct inversion. Several formulations were tested for the optimizing cost functions, with
overall good results. For practical reasons (computational efficiency), frequency-domain
cost functions should be used when identifying the wave-path parameters.

Stochastic optimization techniques are better adapted to these problems, because error
functions display many local maxima and minima. Simulated annealing, when adapted for
multi-dimensional search in a continuous space, performed well for both the wave-path
and impact location identifications.

It was found that, for the problem of concern here, common Bernoulli–Euler beam
theory is adequate for modelling wave propagation. Several damping models were tested
(in the dispersion equation). No significant differences were found, in practice, for
low-damped systems such as the one used in our tests.

On the other hand, it appears that identification of the propagation parameters may be
often skipped, because (a) the experimentally identified propagation constant was well
predicted by theory, and (b) under noisy conditions, inversions should be performed by
neglecting damping effects.

Experiments suggest that transducers with excessive precision of phase matching are not
required to achieve acceptable identification results, at least for the basic problem
addressed here.

A simple technique was developed to suppress wave-reflections from the direct waves.
Although effective, such a technique applies only to very simple impact problems, and is
not adequate for realistic conditions, when many waves travel simultaneously. This
fundamental problem will be addressed elsewhere.

In this paper, we were mostly concerned about identification tools and the feasibility
of this project. The basic results presented here are quite encouraging. They suggest that
remote impact-force identification, for more complex systems, is not a hopeless task—at
least, provided that damping effects (how quickly the system forgets its history) are not
too significant.
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APPENDIX: NOMENCLATURE

A area of the beam cross-section
Cn wave amplitude parameters
cn phase speed of the waves
C frequency parameter of kn

D, D' damping parameter of kn

E Young’s modulus of the beam
Fy (t) external force
Fn spectral coefficients of the external force
F, F−1 direct and inverse Fourier transforms
G(x, vn ) wave-to-wave transfer function
G	 (x, vn ) force-to-wave transfer function
I moment of inertia of the cross-section
kn =F(vn ) dispersion relation of the waves
N axial tension of the beam
r ‘‘cooling’’ factor in simulated annealing
s ‘‘cooling’’ step in simulated annealing
Si search domain for variable i
t time
tr arrival time of the first wave reflection
T ‘‘temperature’’ in simulated annealing
x location along the beam
y(x, t) flexural beam response
yb backward going wave
yf forward going wave
Yn spectral coefficients of the wave
y(x, q) dimensionless beam response
om , dn optimisation cost functions
r mass density of the beam
h viscosity coefficient
vn circular frequency
x dimensionless distance
q dimensionless time


